AMERICAN

OURNAL
ﬁ;(srmnl (}J!. PHYS]CS
 ———— e T

Stable circular orbits of freely moving balls on rotating discs
Klaus Weltner

Citation: American Journal of Physics 47, 984 (1979); doi: 10.1119/1.11602

View online: http://dx.doi.org/10.1119/1.11602

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/47/11?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Control with expenditure criteria in rotational motion of the satellite moving along a circular orbit
AIP Conf. Proc. 1648, 450010 (2015); 10.1063/1.4912669

The innermost stable circular orbit in compact binaries
AIP Conf. Proc. 575, 176 (2001); 10.1063/1.1387310

Ball moving on stationary or rotating horizontal surface
Am. J. Phys. 60, 43 (1992); 10.1119/1.17041

Central drift of freely moving balls on rotating disks: A new method to measure coefficients of rolling friction
Am. J. Phys. 55, 937 (1987); 10.1119/1.14910

Stable oscillating orbits of a charged particle moving parallel to a current
Am. J. Phys. 54, 950 (1986); 10.1119/1.14802

The perrfect venue

for REU students to present
their research.



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1314864291/x01/AIP/SPS_TPTCovAd_1640x440_09_07_2016/PhysCon_1640x440_2b.jpg/33722b58693165736c486741447a3563?x
http://scitation.aip.org/search?value1=Klaus+Weltner&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.11602
http://scitation.aip.org/content/aapt/journal/ajp/47/11?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4912669?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1387310?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/60/1/10.1119/1.17041?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/55/10/10.1119/1.14910?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/54/10/10.1119/1.14802?ver=pdfcov

Stable circular orbits of freely moving balls on rotating discs
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If balls are set on rotating discs these balls do not leave the rotating plane but
move on circles. The frequency of this circular movement depends on neither
radius nor mass of the balls, nor on the radius of the circle. It depends only on
the frequency of the rotating disc. It can be shown that this surprising
phenomenon, which can easily be observed, is due to friction between ball and

disc. A theoretical solution is given.

I. PHENOMENON

A surprising phenomenon may be observed while ex-
perimenting with balls on rotating discs to demonstrate
Coriolis acceleration. The rotating disc must be accurately
horizontal. A ball may rest in the center of the disc. The ball
is given a push. To show effects of rotating reference sys-
tems this push is usually a strong one. The ball moves out-
ward and leaves the disc.

If the disc rotates relatively fast, say with one rotation
per second, and if the push is not very strong, an unexpected
phenomenon occurs. The ball runs on a circular orbit back
to the center.! The radius of the orbit depends on the initial
impulse. The frequency of the orbital motion depends only
on the frequency of the rotating disc. It is given by

we = (2/7) wa, (M

where w. = frequency of orbital motion and wy = rotational
frequency of disc. The sense of rotation is the same for w,
and wg.

During the movement the ball rotates because of the
friction between ball and disc. Figure 1 shows the circular
orbit of the center of the ball.?

The phenomenon is not restricted to the special case of
motion starting at the center of the disc. If balls are set on
the rotating disc at any place, the results are circular orbits.
The center of the orbit depends on the starting point and
initial impulse. The rotational frequency still is given by (1).
1t does not even depend on the radius of the ball. Small and
big balls run with the same frequency of rotation on circular
orbits of any radius. With hollow balls (ping-pong balls) the
phenomenon is the same but with a changed rotational
frequency,

W, = (Z/S)wd (2)

If the plane of the rotating disc deviates from the horizontal
adjustment, a drift movement is superimposed.

In Fig. 2 the disc may be inclined along the y axis. If the
disc does not rotate, the ball is accelerated in the y direction.
On a rotating disc a constant drift velocity of the center of
the circular orbit results in the x direction. The balls move
on orbits which drift in a direction perpendicular to the
direction of inclination.

II. THEORY
A. Basic Idea

The following considerations refer to the inertial refer-
ence system. The phenomenon is caused by the friction
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Fig. 1. Orbital path of a freely moving
ball on a rotating disc.

between ball and disc. The basic assumption is that the ball
rolls without slipping. In this case velocity of the ball surface
vy and the velocity of the rotating disc vq are equal for the
point of contact (see Fig. 3). The velocity of the rotating disc
at the point of contact is given by

Vg =Wy XT.

The velocity of the surface of the ball at the point of contact
is the sum of the velocity of the center of the ball and the
velocity resulting from the spin of the ball: »

vp = Fp + wp X R,

Since v, = vy, the angular velocity of the ball wy, may be
deduced in terms of r and #. With the angular velocity wy
the angular momentum L is determined. If the ball moves,
L changes. This change of angular momentum L must be
caused by a torque, caused by friction force at the point of
contact. Simultaneously this force changes the translational
momentum P of the ball. To get the right change of L the
frictional force must be perpendicular to r. Thus orbital
movements arise. By considering a special point of the orbit
it may be made plausible that the frictional force F is per-
pendicular to r.

I

Fig. 2. Path of a ball moving on a rotating disc inclined along the y
axis.
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Fig. 3. Denotions of position.

Look at Fig. 4. Two points nearly opposite to the center
of rotation of the disc are drawn. The ball moves on the
rotating disc from position (D to position ). In this special
position the directions of AL and i coincide. The difference
of the angular momentum AL is the effect of the torque by
the frictional force F. By this, F must be perpendicular to
AL and . .

This consideration cannot be applied at a general position
on the circular orbit. Furthermore, it does not take into
account that the angular momentum of the ball is given by
the rotation of the disc and i. To get a satisfying solution
we must solve the equations of motion.

B. Solution

1. Equations of motion
Velocity of any point on the disc is

Ve=wg XT. 3)

Velocity of the surface of the ball at the point of contact
is

v, =1+ w, XR. (4)
Since we assume no slip at the point of contact,
Vo= Vg4 (3)
Inserting (3) and (4) in (5), we get
wp XR+iF=wy Xr. (6)
We rearrange (6):
wp XR=wy Xr—r. (7
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We differentiate the equation:

@y X R=wy X i—F. (8)

The derivative of angular momentum L equals the torque

of the friction force F with respect to the center of mass:

L=7&,=RXF. )

[ denotes the moment of inertia of the ball. F accelerates
the ball as a whole:

F=m-i.
We insert (10) into (9):
ITop=RXm-i (11)
Now we combine (11) and (8):
[(RA)Xm-F] X R=wy X F—F. (12)

The left-hand side of the equation may now be simpli-
fied:

(10)

(RYD)em-F=wy X i—F. (13)
We rearrange and get the equation of motion:
it =wy; X i/(R3/D-m+1). (14)

2. Solutions of the equation of motion

The disc rotates around the origin of the coordinate
system. We now show that circular orbits of the center of
the ball are solutions of Eq. (14). The ball moves on a cir-
cular path with radius | p| and frequency w,. The center of
the orbit ry is arbitrary. (See Fig. 5.)

r=ry+p (15)
F=w. Xp (16)
i=-—wlp (17)
We insert (16) and (17) in (14) and get
1 _ Wi X (W Xp) —wy-wep
- N = = £ 18
CP=T R m+1 Ry -ome1 1Y
=_ @4
CERID - m+ 1 (19)
L
At
6

L

-

Fig. 4. Angular momentum of ball in two positions.
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Fig. 5. Circular path of ball with arbitrary center and radius.

The angular frequency of the orbital motion is independent
of the center and the radius of the orbit. This is exactly the
phenomenon which is observed. The moment of inertia of
a solid ball is

I=(2/5)-R%-m. (20)
We thus obtain
we = wg -+ (2/7). n
With a hollow ball we have
we = wg+(2/5) (22)

If we wish, we may find the two constants rg and |p| in
terms of the initial data r(0) and v(0):

i(0)2 = v%(0) = w. - p? (23)
p = v(0)/w,. (24)

The radius of the orbit increases with increasing initial ve-
locity. If v(0) = 0 the spinning ball remains at any point of
the disc. This is easy to observe.

We get r(o) from (15) and (16),

r, = r(o) — p(0). (25)
Since
p(0) = v(0) X w/w?, (26)
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x(o) - (Uy(o)/wc)
ro = yy(0) + (e (0)/w:) ¢ - (27)
0

3. Motion on an inclined rotating disc

The horizontal adjustment of the rotating disc is often
inaccurate. In this case we observe that the center of the
orbit drifts in a certain direction. The velocity of this drift
is proportional to the inclination of the disc. The drift results
from a constant force acting on the ball.

We denote the constant force F,,. Accordingly, Eq. (11)
changes to

m-¥=F+F,. (28)
Equation (12) now becomes
[-wp=RX (m-F—F,). (29)

All equations up to (14) are modified accordingly and (14)
becomes

(RYI)+m-i— (RYDNF, = wg X t—F.  (30)

The solution of this equation is a superposition of the orbital
movement and a constant drift velocity vg4:

r=r,+p+vy-t. (31)

Inserting the derivatives of (31) into (30), we obtain
—(R¥YI)-Fo=wy X vy (32)
va = —F, X wg(R¥YIw?). (33)

The drift velocity is thus perpendicular to Fo.

'Mr. Straub, a member of our institute, built a rotating disc to demonstrate
Coriolis accelerations and observed the phenomenon in 1977. Since it
is easily observed and is an interesting problem of classical mechanics,
[ assume that it has previously been described, but as far as I know the
literature, examples are given below, 1 have not found the problem
mentioned. G. R. Fowles, Analytical Mechanics (Rinehart and Win-
ston, New York, 1977); G. Hamel, Theoretische Mechanik (Springer,
Berlin, Gottingen, and Heidelberg, 1949); G. L. Kotkin, and V. G.
Serbo, Collection of Problems in Classical Mechanics (Pergamon, New
York, 1971); 1. Mestscherki, Aufgabensammlung zur Mechanik
(Deutscher Verlag der Wissenschaften, Berlin, 1955); K. R. Symon,
Mechanics (Addison Wesley, Reading, Mass., 1971).

2The effect may even be observed with a ping-pong ball on a phonograph
turntable, but in this case the frequency is a bit low, and the stability
of the orbit is thus poor.
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